7.3 Multivalued Dependency 3s1

This property of multivalued dependency can be expressed formally by the def-
inition given below. '

Let us examine the problems that are created as a result of multivalued depend-
encies. Consider Figure 7.2 for the EMPLOYEE relation. It has two multivalued
dependencies:

Employee_Name ——> Dependent_NameDependent_Relationship
Employee_Name ——> Position_TitlePosition_Date

Suppose employee Jill Jones gets a promotion on 12/15/86 to the position of
manager. This involves adding two tuples to the database, one for each of her two
dependents, to correctly register her employment history. A change in the value of
an FD in a relation involving an MVD requires the change to be reflected in all
tuples corresponding to that entity. In the EMPLOYEE relation of Figure 7.2 a
change of the home address of an employee would have to be reflected in all tuples
pertaining to that employee. Thus, if Jill Jones moves to Boston and her home phone
number changes to 368-4384, a change is required in not one tuple but six tuples
(after the addition of the two tuples for an additional position). Deletion requires ‘that
more than one tuple be deleted. For example, in the SCHEDULE relation, if course
355 is canceled, two tuples must be deleted from the table shown in Figure 7.3.

Summarizing, note that in multivalued dependencies the requirement is that if
there is a certain tuple in a relation, then for consistency the relation must have
additional tuple(s) with similar values. Updates to the database affect these sets of
tuples or entail the insertion of more than one tuple. Failure to perform these multiple
updates leads to inconsistencies in the database. To avoid these multiple updates, it
is preferable to replace a relation having undesirable MVDs with a number of more
-‘gesirable”’ relation schemes. We illustrate more desirable schemes in F'gure 7.4

g

Chapter 7 Synthesis Approach and Higher Order Normal Form

Figure 7.4 Replacing the EMPLOYEE relation with three relations.
Employee_Name Dependent_Name Dependent_Relationship
Jill Jones Bill Jones spouse
Jilt Jones Bob Jones son
Mark Smith Ann Briggs spouse
Mark Smith Chloe Smith-Briggs daughter
Mark Smith Mark Briggs-Smith son
: »ﬁ:’rilplme_ Position_. Position_ Employee_ Home_ Home._.
-7 ! Name Title Date Name City Phone#
Jill Jones J. Engineer 05/12/84 Jill Jones Lynn, MA 794-2356
Jill: Jones Engineer 10/06/86 Mark Smith Revere, MA 452-4729
Mark Smith Programmer 09/15/83
Mark Smith Analyst 06/06/86

7.3.1

for the EMPLOYEE relation of Figure 7.2.' Such a scheme avoids the necessity of
multiple storage of the same information.

MVD and Normalization

In the normalization approach of a relation scheme with deletion, insertion, and up-
date anomalies we have considered only functional dependencies so far. When the
relation scheme to be normalized exhibits multivalued dependencies, we have to en-
sure that the resulting relation schemes do not exhibit any of these undesirable dele-
tioni, insertion, and update anomalies. A normal form called fourth normal form has
been defined for relation schemes that have FDs as well as MVDs. The fourth normal
form imposes constraints on the type of multivalued dependencies allowed in the
relation scheme and is more restrictive than the BCNF.

The normalization of a relation scheme with MVDs requires, as in the case of
normalization of relations with only FDs, that the decomposed relation schemes are
both lossless and dependency preserving. The following property of the MVD will

be used in the normalization approach.

"Recall our discussions on separating a repeating group from the representation of an entity set and replacing each such group
by an identifying relationship and a weak entity. These were then represented by a relation containing the key of the strong
entity along wiih the attributes of the weak entity (See Chapter 2). ‘

7.3 Multivalued Dependency 353

Property of MVD

The following theorem for multivalued dependency is from Fagin (Fagi 77). We
simply state it here. For the proof, see the bibliographic notes at the end of the
chapter for the reference.

Theorem 7.1: If there is a multivalued dependency X ——> Y in a relation R, it also has

an MVD X =R — XY and R can be decomposed losslessly into two relations R;(X,Y)

and Ry(X,Z) where Z = R — XY. ‘
7

 As a consequence of the above, a relation scheme witn an MVD must be able /\3.5}"
to be decomposed losslessly. Consider a relation scheme R. Let X, Y, Z be subsefs' >~

of R, not necessarily disjoint, such that Z = R — XY. Let R be a relation on
relation scheme R. Relation R satisfies the MVD X —— Y if and only if

R = mrxynR) P wraxzy(R)
In other words, R decomposes losslessly into the relation scheme R, and R,.

Example 7.6 (a) In the normalized EMPLOYEE relation of Figure 7.2 with the following
dependencies:

Employee_Name — Home_CityHome_;’hone#. .
Employee_Name ——> Dependent_NameDependent_Relationship,
Employee_Name —— Position_TitlePosition_Date.

the following MVDs are also satisfied:

Employee_Name ——> Home_CityHome_Phone#Dependent_Name
Dependent_Relationship,

Employee_Name ——> Home_C ityHome_Phone#Position_Title
Position_Date.

(b) In Figure 7.4 the following MVDs are trivial:

Employee_Name —— Dependent_NameDependent_Relationship ..
Employee_Name —— Position_TitlePosition_Date W

7.3.2 Axioms for Functional and Multivalued Dependericies

To design a relational database, given a relation scheme R with functional and mul-
tivalued dependencies, we need a set of rules or axioms that will allow us to deter-

_ Chapter 7 Synthesis Approach and Higher Order Normal Form

Thus, given X C U and a set D of dependencies, we can derive a set Y,
1 =i = n, such that
® U_X=Y|YzonoY.’
® Y,Y3 . . . Y,arc pairwise disjoint, i.c., Y, N Y; = ¢ fori # j, and
® For any MVD X —»'Z mn D*, Z is the union of some of the Y;s.

An MVD X —> Z is in D* if and only if Z is a union of some of the sets
from DEF(X), the dependency basis of X relative to the set D of FDs and MVDs. It
follows that for each set Y, € DEP(X), X —- Y,is in D*.

The MVD X —— Y, where Y, € DEP(X) is called a simple MVD.

We see that DEP(X), the dependency basis of X, serves a similar function in
determining if any MVD X —— Y is implied by a set D of FDs and MVDs, as X*
was used to determine if any FD X — Y was implied by a set-cf FDs F.

Algorithm 7.2 computes the dependency basis of X. It simply converts each FD
into an MVD and then applies the rules of the MVD to decompose the MVDs into
simpler MVDs. Careful implementation of the algorithm can be shown to take time
proportional to n’m to complete, where n is the number of attributes in U and m is
the number of dependencies in D.

The following example illustrates the use of Algorithm 7.2

Example 7.7 Consider a database to store student information that contains the following

attributes: students’ names (S), their majors (M), the department they are
registered in (S,), their advisers’ name (A), the courses they are taking (C),
the departments responsible for the course (C,), the. final grades of the stu-
dents in a course (G), the teacher of the course (P), the department of the
teacher of the course (P;), and the room, day, and time (RDT) where the
course is taught. Assume that the students’ names and the advisers’ names
are unique. The database must satisfy the following set H of functional and
multivalued dependencies: ‘

S - MA
M s 84
A - S,
C - ClP
P i P d
RTD - C
TPD — R
TSD -~ R
sC - G

7.3 Multivalued Dependency 387

73.4

We want to compute DEP(C) using Algorithm 7.2. The first step will con-
vert all FDs into MVDs.
Step 3 will give us the set S with the following sets of attributes:
{C.P}, {RTD}, {SMG}, {SMAS P RTDG}, {SMAS P G},
{ASCPPRTD}.

Step 4 will split the sets in S to give the following sets in S:
{C,P), {RTD}, {SMG}, {ASP 4.

Step 5 will complete the intersections and splitting to give S with the
following sets, DEP(C), the dependency basis of C under the above set of
FDs and MVDs: '

{CP, {RTD}, {SMG}, {s2, (A}, {P2

The dependency basis allows us to conclude that the MVDs C ——
SSAMG, C —> PPL,, etc., are in H*, since the right-hand side of each
MVD is a union of sets from DEP(C). &

Fourth Normal Form

73.5

A generalization of the Boyce Codd normal form to relation schemes which includes
the multivalued dependencies is called fourth normal form and is defined as follows:

, ’k-meh-unpmnofmmuvnsmsaﬁsﬁed.
putes X and Y where X C R, Y C R. The relation scheme
Y is a trivial MVD or X is a superkey of R.

schemes included in the database

If a relation scheme R with the set D of FDs and MVDs. is in fourth normal
form, .it is also in BCNF. If this were not so, R would satisfy a functional depen-
dency not involving the superkey as a determinant of the form X — Y. However, by
the rule M1 X — Y | X Y. Again X here is not a superkey, but this contradicts
the assertion that R is in fourth normal form. :

Lossless Join Decomposition into Fourth Normal Form

Givenamlaﬂonscl;emexhaismtinmmfmn,wewouldliketodecom-
poseitinm:setoftehﬁonsd\atminfmmhnmnnlfomundathesameﬁmewe
want_topteserveallmedependencics. Furthermore, we want the decomposition to
be lossless. The latter reouirement in the decomposition can be obtained using the:

Chapter 7 Synthesis Approach and Higher Order Normal Form

7.3.6

tions are the same as the ones shown in Figure 7.4.) The relations of Figure 7.5a
and b have the trivial multivalued dependency X —— Y with R = XY. In addition,
they are all key relations. A nontrivial MVD can be said to exist only if the relation
has at least one attribute in addition to the two sets of attributes involved in the
MVD.

Enforceability of Dependencies in the Fourth Normal Form

The fourth normal form decomposition algorithm produces a lossless relation scheme;
however, it may not preserve all the dependencies in the original non-4NF relation
scheme. In Example 7.8, we use one MVD at a time to decompose a non-4NF
relation scheme into two relation schemes. Then we determine if each of these
schemes is in 4NF. The following properties are used to find the dependencies that
apply to the decomposed schemes.

Given R and the set of FDs and MVDs D, let R, be a projection of R, ie.,
R, C R. The projection of D on R, is derived as follows:

For each FD X — Y such that D X — Y, and if X C R,, then X - (Y N
R;) holds in R,.

For each MVD X —- Y such that D F X—- Y, and if X C R, then X -
(Y N Ry) holds in R,.

Example 7.8 illustrates this method.

Example 7.8 Consider R(A, B, C, D, E, F, G) with the set H of FDs and MVDs given

by H{A - B, B> G, B - EF, CD — E}.

R is not in 4NF since for the nontrivial MVD A —— B, Ais not a
superkey of R. We can take this MVD and decompose R into Ry(A, B) and
R(A, C, D, E, F, G). R, s in 4NF; however, the reduced relation R is not
in 4NF.

Now the MVDs A ——> B and B = G give by axiom M6 A ——
G — B, which is equivalent to A — G. Using this MVD, we decompose
Rinto RyA, G)and R(A, C, D, E, F). Ry is in 4NF; however, the reduced
relation R is still not in 4NF.

We now take the MVD CD —- E (after converting the FD into an
MVD) and decompose R into Ry(C, D, E)and R(A, C, D, F).

The MVDs A —> B, B —> EF by axiom M6 give A > EF — B,
which reduces to A —— EF and when restricted to the current relation R
gives A = F. Decomposing R now gives Ry(A, F) and R(A, C, D).

R(A, C, D) is in 4NF since A — B F A = CDEFG and its restric-
tion to current relation R gives A —— CD.

However, we notice that the dependency B —— G is not preserved. W

Example 7.8 illustrates that the 4NF decomposition is not dependency preserv-
ing. Thus if lossless as well as dependency preserving decomposition is required, we
may have to settle for simple 3NF relation schemes, unless the BCNF decomposition
is lossless as well as dependency preserving. An approach that could be used to

7.4 Normalization Using Join Dependency: Fifth Norma! Form 361

derive a dependency preserving decomposition is to eliminate each redundant depen-
dency in D?2. This process can be repeated until only nonredundant dependencies
remain in D. However, the order in which the dependencies are checked for redun-
dancy determines the resulting nonredundant cover of D. In this process, the MVDs
should be eliminated before trying to eliminate FDs. The intuitive reason for this is
that the FDs convey more semantics about the data than the MVDs.

Dependency preserving decomposition involving D, a set of FDs and MVDs,
requires the derivation of the so-called 4NF cover of D. No efficient algorithms exist
to date to compute such a cover. The algorithm to decompose a relation into a loss-
less and dependency-preserving 4NF relation is beyond the scope of this text. Inter-
ested readers should consult the references in the bibliographic notes. Attempts have
been made to find a synthesis algorithm to construct a relation scheme from a set of
FDs and MVDs. Here again, no satisfactory algorithm has emerged.

7.4 Normalization Using Join Dependency: Fifth
: Normal Form

A criterion of good database design is to reduce the data redundancy as much as
possible. One way of doing this in a relational database design is to decompose one
relation into multiple relations. However, the decomposition should be lossless and
should maintain the dependencies of the original scheme. A relational database de-
sign is, as such, a compromise between the universal relation and a set of relations
with desirable properties. The relational database design thus tries to find relations
satisfying as high a normal form as possible. For instance, 3NF is preferable to 2NF,
BCNEF is preferable to 3NF, and so on.

However, recent research in relational database design theory has discovered
higher and higher, hence more desirable normal forms. Fifth normal form (5NF) is
a case in point. It is related to join dependency, which is the term used to indicate
the property of a relation scheme that cannot be decomposed losslessly into two
simpler relation schemes, but can be decomposed losslessly into three or more sim-
pler relation schemes.

To understand join dependency, let us use the following dependencies from the
database for an enterprise involved in developing computing products. It employs a
number of workers and has a variety of projects.

Project ——> Expertise
(i.e., expertise needed for a given project)
Employee ——> Expertise
(i.e., expertise of the employee)
Employee —— Project
(i.e., preferences of the employees to match their expertise)

2Elimination of redundant dependencies doesn’t guarantee dependency-preserving decomposition, in general. However, with
conflict-free MVDs, the lossless decomposition is also dependency preserving. Conflict-free MVD sets are equivalent to
acyclic join dependencies (Lien 85, Scio 81).

364 . Chapter 7 Synthesis Approach and Higher Order Normal Form
Figure 7.9 Decomposition. of reiation of Figuie 7.8.
Project Expertise
Work Station User interface
Work Station Artificial Intelligence
Work Station VLSI Technology
Work Station Operating Systems
SQL 2 Relational Calculus
SQL 2 Relational Algebra
QBE + + Relational Calculus
Query Systems Database Systems
File Systems Operating Systems
(@
Employee Expertise Employee Project !
Brent User Interface Brent Work Station
Brent Artificial Intelligence Mann Work Station
Mann VLSI Technology King SQL 2
King Relational Calculus Ito SQL 2
Tto Relational Algebra Ito QBE + +
Ito Relational Calculus Smith File Systems
Smith Database Systems Smith Query Systems
Smith Operating Systems Smith Work Station
®) ©
Mann, and Smith combined. Brent is assigned the User Interface and Artificial Jntel-
ligence related role, Mann is assigned the VLSI Technology related role, and Smith
is assigned the Operating Systems role. This flexibility was not exhibited in the data
of Figure 7.6.

The relation of Figure 7.8 does not show any functional or multivalued depend-
encies; it is an all-key relation and therefore in fourth normal form. Unlike the rela-
tion PROJECT_ASSIGNMENT, the relation NEW_PROJECT_ASSIGNMENT
cannot be decomposed losslessly into two relations. However, it can be decomposed
losslessly into three relations. This decomposition is shown in Figure 7.9. Two of
these relations, when joined, create a relation that contains extraneous tuples; thus
the corresponding decomposition is not lossless. These superfluous tuples are re-
moved when the resulting relation is joined with the third relation. Note that the
MVDs, similar to those exhibited in Figure 7.6, are embedded in this example.

7.41 Join Dependencies

So far we have focused on the decomposition of a relation scheme with undesirable
properties into two relation schemes (a. each step of a multistep process) such that

7.4 Normalization Using juin Dependency: Fifth Normal Form 365

the decomposition is lossless. A join of these decomposed relation schemes will give
the original scheme and, hence, the data. However, as we saw in the previous section,
although it may not be possible to find a lossless decomposition of a relation scheme
into two relation schemes, the same relation scheme can be decomposed losslessly
into three relation schemes. This property is referred to as the join dependency (JD).

A necessary condition for a relation scheme R to satisfy a join dependency *[R;,
Rz,. . .R.]isthatR= R|UR2U. . .UR.;.

The relation schume PROJECT_ASSIGNMENT satisfies the join dependency
*[PROJECT_REQUIREMENT, PROJECT_PREFERENCE], since the join of-
PROJECT_REQUIREMENT and PROJECT_PREFERENCE gives the relation
PROJECT_ASSIGNMENT losslessly. However, the relation NEW_PROJECT_
ASSIGNMENT does not satisfy any of the following join dependencies:

*[(Project,Expertise),(Employee,Expertise)]
*[(Project,Expertise),(Employee, Project)]
*[(Employee, Expertise),(Employee, Project)]

Relation NEW_PROJECT_ASSIGNMENT, however, satisfies the join depen-
dency:

*[(Project,Expertise), (Employee,Expertise), (Employee, Project)}

Since the relation scheme NEW_PROJECT_ASSIGNMENT does not satisfy
any nontrivial MVD, thep by Fagin’s theorem (Theorem 7.1) it cannot be decom-
posed losslessly into two relations.

It is worthwhile pointing out that svery MVD is equivalent to a join dependency;
however, the converse is not true, i.e., there are join dependencies that are not equiv-
alent to any nontrivial MVDs. The first part of this statement can be confirmed as
follows: The relation R(R) satisfies the MVD X —— Y if and only if the decompo-
sition of R into XY and R — Y is lossless. This is equivalent to saying that R(R)
satisfies the JD *[XY, R — Y]. Conversely, R satishes the JD *[R;. R2] if Ry N
R;— R,, or R; N R; = R;. However, not all JDs are equivalent to MVD, as
seen in Figures 7.8 and 7.9.

A join dependency on the relation scheme R, in addition to those for MVDs,
could also be a result of key dependencies. This can occur when the decomposition
of a relation involves a superkey and the relation can be reconstructed by joins, every
join involving a superkey. Thus, if R(X,, X3 .« « » Xp) and if X;s are the super-
_ keys of R, then the join dependency *[Xy, X3, . . . X, is due to the keys of R.

370 ~ Chapter 7 Synthesis Approach and Higher Order Normal Form

constraint, the relation TRANSCRIPT becomes illegal after the inser-
tion. B

We now give the formal definition of DK/NF.

;. whewt § is the set of atributes, ['is
of gencral constraints, is in domain

- A normalized relation is in DK/NF if the DCs and KCs imply the general con-
straints. The DK/NF is considered to be the highest form of normalization, since all
insertion and deletion anomalies are eliminated and all general constraints can be
verified by using only.the DCs and KCs. For the TRANSCRIPT relation of Example
7.10, we can use the following decomposition to get two relations in DK/NF.

Example 7.11 The TRANSCRIPT relation of Example 7.10 can be decomposed. into the
following relations:

TRANSCRIPTS_REGULAR(Student#, Course, Grade) with the domain
constraints (Student# being 8 digit, Course being 3 digit in the range 000
through 899, and Grade in the set {A, B, C, D, F}). The key as before is
Student#Course.

TRANSCRIPTS_SPECIAL(Student#, Course, Grade) with the domain
‘constraints (Student# being 8 digit, Course being 3 digit in the range 900
through 999, and Grade in the set {P, F}). The key as before is Student#
Course. B

An MVD can be expressed as a general constraint. To examine the insertion
and deletion anomalies in such a situation, let us look at Example 7.12 using a
software company. ‘

Example 7.12 The work of the company is organized as projects and the employees are

: grouped as teams. A number of projects are assigned to each group and it

is assumed that all employees in the group are involved with each project

assigned to it. This is the general constraint for the relation TEAM-

WORK(Group, Employee, Project) as shown in Figure Bi. Assume that the

domain of the attributes are a character string of length 20. The only key of
the relation is the entire relation.

The insertion of a legal tuple, (B, Su, FILE_MANAGER), causes the

relation TEAMWORK to become invalid. This is because the general con-

i straint is no longer satisfied and requires the insertion of additional tuples.

7.5 Domain Key Normx! Form YA

#
Figure B The TEAMWORK relation and its DK/NF decompositions.
Group Employee Project Group Employee
A Jones HEAP_SORT A Jones
A Smith HEAP_SORT A Smith
A Lalonde HEAP_SORT A Lalonde
A Jones BINARY_SEARCH B Evan
A Smith BINARY_SEARCH B Lalonde
A Lalonde BINARY_SEARCH B Smith
B Evan B+ +_TREE
B Lalonde B+ +_-TREE
B Smith B+ +_TREE
B Evan FILE_MANAGER
B Lalonde FILE_MANAGER
B Smith FILE_.MANAGER
0] |
Group Project
A HEAP_SORT
A BINARY.SEARCH
B B+ +_TREE -
B FILE_MANAGER
(i)
Similarly, the deletion of the tuple (A, Lalonde, FILE_MANAGER) makes
the relation TEAMWORK violate the general constraint and requires the
deletion of additional tuples. '
In order to convert the relation into DK/NF, we can decompose it into
the two relations TEAM(Group, Employee) and WORK(Group, Project).

This is shown in Figure Bii. M

It has been shown that a relation in DK/NF is also in PJ/NF and, therefore, in
4NF and BCNF. The proof, found in (Fagi 81), is beyond the scope of this text.

The advantage of DK/NF relations is that all constraints could be satisfied by
ensuring that tuples of the relations satisfy the corresponding domain and key con-
straints. Since this is easy to implement in a database system, relations in DK/NF
are preferable. However, no simple algorithms exist to help in the design of DK/NF.
Moreover, it appears unlikely that relation schemes with complex constraints could
be converted to DK/NF. , .

The theory for join dependency is well developed; unfortunately, the results are
negative. It has been concluded that JDs don’t have a finite axiom system. Conse-
quently, we have to be content with relations in 3NF or BCNF. Since we cannot

374 Chapter 7 Synthesis Approach and Higher Order Normal Form

theorem that states that a DK/NF is also in the PJ/NF, 4NF, and BCNF. Axiom systems for
generalized and template constraints can be found in (Beer 84) and (Sadr 81).

Textbook discussions of the relational database design are included in (Date 85), (Lien
85), (Kort 86), and (Ullm 82). (Maie 83) gives a very detailed theoretical discussion of the
relational database theory including relational database design.

Bibliography

(Aho 79) A. V. Aho, C. Beeri, & J. D. Ullman, *“The Theory of Joins in Relational Databases," ACM TODS
4(3), September 1979, pp. 297-314.

(Arms 74) W. W. Ammstrong, ‘‘Dependency Structures of Database Relationships.”’ Proc. of the IFIP, 1974,
pp. 580-583.

(Beer 77) C. Beeri, R. Fagin, & J. H. Howard, ‘‘A Complete Axiomatization for Functional and Multivalued
Dependencies,’’ Proc. of ACM SIGMOD International Symposium on Management of Data,
1977, pp. 47-61.

(Beer 79a) C. Beeri, & P. A. Bemnstein, ‘‘Computational Problems Related to the Design of Normal Form
Relational Schemes,’” ACM TODS 4(1), March 1979, pp. 113-124.

(Beer 79b) C. Beeri, & M. Y. Vardi, ‘‘On the Properties of Join Dependencies,’’ in H. Gallaire et al., ed.,
Advances in Database Theory, vol. 1. New York: Plenum Press, 1979.

(Beer 80) C. Beeri, ‘‘On the Membershlp Problem for Functional and Multivalued Dependencies in Relational
Databases,”” ACM TODS 5(3), September 1980, pp. 241-259.

(Beer 84) C. Beeri, & M. Y. Vardi, ‘‘Formal Systems for Tuple and Equality Generating Dependencnes," SIAM
Journal of Computing 13(1), pp. 76-98.

(Bem 76) P. A. Bemstein, *‘Synthesizing Third Normal Form Relatlons from Functional Dependencies,”’ ACM
TODS 1(4), March 1976, pp. 277-298.

(Bisk 79) J. Biskup, u. Dayal, & P. A. Bemstein, ‘‘Synthesizing Independent Database Schemas,’’ Proc. ACM
SIGMOD International Symposium on Management of Data, 1979, pp. 143-152.

(Codd 70) E. F., Codd, ‘‘A Relational Model for Large Shared Data Banks,”’ Communications of the ACM
13(6), June 1970, pp. 37/-387.

(Codd 72) E. F. Codd, E.F *‘Further Normalization of the Data Base Relational Model,”’ in R. Rustin, ed.,
Data Base Systems. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 33-64.

(Date 85) C. J. Date, An Introduction to Database Systems, vol. 1, 4th ed. Reading, MA: Addison-Wesley,
1985.

(Delo 78) C., Delobel, ‘‘Normalization and Hierarchical Dependencies in the Relational Data Model,”” ACM
TODS 3(3), September 1978, pp. 201-22.

(Fagi 77) R. Fagin, ‘‘Multivalued Dependencics and a New Normal Form for Relational Databases,”” ACM
TODS 2(3), September 1977, pp. 262-278.

(Fagi 79) R. Fagin, ‘‘Normal Forms and Relational Database Operators,”” ACM SIGMOD International
Symposium on Management of Data, 1979, pp. 153-160.

(Fagi 81) R. Fagin, *‘A Normal Form for Relational Databases that is Based on Domains and Keys,"’ ACM
TODS 6(3), September 1982, PP- 387-415.

(Kent 81) W. Kent, *‘Consequences of Assuming a Universal Relation,”’ ACM TODS, 6(4), December 1981,
pp. 539-556.

(Kort 86) H. E. Korth, & A. Silberschatz, Database Systems Concepts. New York: McGraw-Hill, 1986.

(Lien 81) Y. I?‘Llen **Hierarchical Schemata for Relational Databases,”” ACM TODS, &1), March 1981, pp.
48-69

(Lien 85) Y. E. Lien, ‘‘Relational Database Design,”’ in S. Bing Yao, ed., Principles of Database Design.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

7.6 Summary 378

(Maie 80) D. Maier, ‘‘Minimum Covers in the Relational Database Model,” Journal of the ACM. 214),
October 1980, pp. 664-674.

(Maie 83) D. Maier, The Theory of Relational Databases. Rockville, MD: Computer Science Press, 1983.

(Riss 79) J. Rissanen, ‘‘Theory of Joins for Relational Databases—A Tutorial survey,”” Proc. Seventh
Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 64. Springer-Verlag, New York pp. 537-551.

(Sadr 81) F. Sadri, & J. D. Ullman, ‘‘Template Dependencies: A Large Class of Pependencies in Relational-
Databases and Their Complete Axiomatization,’” Journal of the ACM. 29(2), April 1981,.pp.
363-372. :

(Scio 81) E. Sciore, *‘Real World MVDs,”’ Proc. of the ACM SIGMOD Conf., 1981, pp. 121-132.

(Scio 82) E. Sciore, ‘A Complete Axiomatization of Full Join Dependencies,”” Journal of the ACM. 29(2),
April 1982, pp. 373-393.

(Ullm 82) J. D. Ullman, Principles of Database Systems, 2nd ed. Rockville, MD: Computer Science Press,
1982.

(Zani 81) C. Zaniolo, & M. A. Melkanoff, *‘On the Design of Relational Database Schemata,”” ACM TODS.
6(1), March 1981, pp. 1-47.

378 Chapter 8 The Network Model

Figure 8.1 Occurrences of CLIENT and BOOK record types.

(a)

8.1.1 Expressing Relationship: The DBTG Set

The relationship of a client borrowing a book from the library may be represented by
the entity relationship diagram of Figure 8.2a. The corresponding data structure dia-
gram is shown in Figure 8.2b. In part a, we have the entity set CLIENT, which is
related to the entity set BOOK in a one-to-many relationship; a client may have
borrowed several books. Later we look at the possibility of a many-to-many relation-
ship, where we show that a client has borrowed several books, as shown in part b,
and also that a book (or a copy of the book) may have been borrowed by many
clients, as shown in part c. ’

To express the relationship between the client and the borrowed book, the net-
work model uses the set construct. The word set used here does not imply the math-
ematical meaning but indicates that there is a relationship between two record types.
A set type represents a one-to-many relationship from the E-R model. An instance
of the relationship is expressed by an instance or occurrence of the set type. A set
consists of an owner record type and one or more member record type(s). The DBTG
proposal of 1971 did not allow a record type to be both an owner and a member
within the same set type. However, in the 1978 version of the proposal this restric-

8.1 The Network Data Model 379

Figure 8.2 Relationship between CLIENT and BOOK.

(?ziepi:_No) (Name) (Addlmsi) (Author) (Title)(Call_No)
l

CLIENT BORROWED BOOK
(a)
CLIENT ' BOOK
BORROWED BORROWED BY

.]

(b) (©)

tion was eliminated. In the revised version, the records participating in a set type
may be of the same type or of different types (We examine this aspect of the set
construct in Section 8.4.) An occurrence of a set type consists of one occurrence of
the owner record type and zero or more occurrences of the member record type(s).

The data structure diagram of Figure 8.2b represents the set BORROWED; the
owner record type is CLIENT and the member record type is BOOK. The relation-
ship between them is represented by the directed arc labeled with the name of the
set; it is a functional link. The direction of the arc is from the owner to the member
record type. The direction of the functionality is opposite to the direction of the arc.
Each occurrence of the set BORROWED represents a relationship. between a client
and the books he or she borrows. If we want to represent the fact that a given book
could have been borrowed by many clients, we must have, in addition to the set of
Figure 8.2b, another set BORROWED_BY, as shown by the data structure diagram
of Figure 8.2c. In the set BORROWED_BY, BOOK is the owner record type and
CLIENT is the member record type. ‘

Even though we can show a many-to-many relationship between two entities by
data structure diagrams as in Figure 8.2b and c, its direct implementation is not
allowed in the NDM. (We examine the reasons for this in Section 8.3 and show how
a many-to-many relationship is implemented in the NDM.)

The set BORROWED can be defined as follows:

set is BORROWED
owner is CLIENT
member is BOOK
end

Figure 8.3a gives some occurrences of the set type BORROWED. As we can
see there is a one-to-many relationship expressed in this set; a CLIENT could borrow
more than one book. If we allow the possibility that there could be more than one
copy of the same book, then the relationship between CLIENT and BOOK becomes
many-to-many; this is shown in Figure 8.3b.

Chapter 8 The Network Model

8.1.3

the record occurrences corresponding to DEPT_SECTIONS of that BRANCH. On
the next level we find the set type WORKS_IN; here the owner is the record type DEPT
SECTION and the member is the record type EMPLOYEE.

A simple database corresponding to the diagram of Figure 8.4 is shown in Fig-
ure 8.5. Here an occurrence of the record type LIBRARY, the MUC Public Library
System, is the owner of the set HAS. The members of this set occurrence are the two
occurrences of the record type BRANCH, Lynn and Revere. The record occurrence
Lynn of the record type BRANCH is the owner of one of the occurrences of the set
type CONTAIN and this set has as its members the record occurrences Adult_Sec
(adult section), Childm_Sec (children’s section), Acqstn_Dept (acquisition depart-
ment), Crcln_Dept (circulation department), and Ref_Dept (reference department) of
the record type DEPT_SECTION. The record occurrence Adult_Sec, in its tumn, is
the owner in the set type WORKS_IN occurrence and has the record occurrence of
the record type EMPLOYEE, for instance Barry, as its member.

Complex Multilevel Set Construct

Figure 6.3

Figure 8.6 is a portion of the library database example of Figure 8.4. However, here
we have split the original record type DEPT_SECTION into two separate record
types DEPT and SECTION.

We illustrate in this example that the DBTG proposal allows a set to have more
than one record type as its member record type. For instance, the set CONTAINS has
two record types as its members. This is not the same as replacing the set CONTAINS
with two sets, for example, CONT_SEC and CONT_DEPT. The data structure dia-
gram for this modification is shown in Figure 8.7.

At this point we might ask the following questions:

® Can the EMPLOYEE record occurrence Carrie in Figure 8.5 be a member of
the two occurrences of the type set WORKS_IN where the owner records are the
occurrences Adult_Sec and Childm_Sec?

Sample database corresponding to Figure 8.4.

|§—E8H
Fl—{geH
r

'y

1
iz

g

8.1 The Network Data Modet - 383

e ——

Figure 5.0 Complex multilevel set construct.

< - - Allowed

1
@?’" I CONTAINS l SECTION I

< - — Not allowed
Y \

| EMPLOYEE I WORKS IN I EMPLOYEE I

® Can the EMPLOYEE record occurrence Jerry be a member of the set WO
IN where the owner records are the occurrences Childm_Sec of record type
SECTION and Acgstn-Dept of record type DEPT?

® Can the set type WORKS_IN have as its owner record a record from two
different record types, SECTION and DEPT?

From Figure 8.6 we also notice that the set type WORKS_IN, as it is shown,
has two different record types as it owner record type. The DBTG proposal allows a
given set type to include member records from more than one record type, but does
not allow a set type to have the owner record coning from two different record types.
Thus the set WORKS_IN, as indicated in Figure 8.6, is not allowed, The DBTG
model requires that the intent of the design must be represented as two sets, for
instance, WORKS_IN_DEPT and WORKS_IN_SECT. This modification is shown in
the modified data structure diagram of Figure 8.7.

The network data model as proposed in the DBTG proposal has certain restric-
tions, which we discuss in the following section. These restrictions mean that the
answer to each of the above questions is in the negative.

The data structure diagrams of Figures 8.7 and 8.8 illustrate the difference be-
tween a set type that can have records from two record types as its member record

Figure 8.7 Onerecordtypeawnerofmwtypes.

BRANCH
CONTAINS_DEPT \ CONTAINS SEC
‘ g
\ WORKS_IN_DEPT \ WORKS_IN_SECTIN

I, . ::»I (‘

Chapter 8 The Network Model

8.3

Expressing an M:N Relationship in DBTG

Figure 8.10

Let us now see how we can express the following relationship in the DBTG¥odel.
We would like to modet a situatiofiiwhere an employee is able to help out in different
departments depending on the workload. For example, during the evening, when
there are more people in the library, it is common to increase the number of clerks
at the circulation desk. An employee assigned to the acquisition department could
also be designated to work in the circulation department. To allow for the possibility
of an employee being assigned to work in more than one department, we need to
express a many-to-many relationship. In this many-to-many relationship, a depart-
ment has many employees and the employees are assigned to more than one depart-
ment. This could be implemented indirectly by expressing two one-to-many relation-
ships and using an intermediate record, the so-called intersection or common
information-bearing record type. Such common information between the two original
record types could, however, be null.

In the DBTG model we can express this M: N relationship by two set types. In
one-set type, the DEPT is the owner record type and the members are the record
occurrences of the EMPLOYEE record type. In the second set type, the owner is an
EMPLOYEE record occurrence and the members are the DEPT record occurrences.
These sets are stown by the data structure diagram of Figure 8.10. However, the
DBTG set construct does not allow the implementation of these sets. Suppose we
allow an employee to work in more than one department. Then the record occurrence
for that emplpyee will appear as a member record in more than one occurrence of
the set WORKSIN_DEPT. This violates the DBTG restriction that a record occur-
rence can be a member of only one occurrence of a given set type. Similarly, for the
set ASSIGNED_TO we find that since there are many EMPLOYEE: in a given DEPT
a given occurrence of a record for that DEPT will be a member of more than one
occurrence of this set type. _

The above reasoning can be used to explain why we could not directly show
the many-to-many relationship between a CLIENT and a BOOK as in Figures 8.2b
and c.

The method for resolving this problem in the DBTG modetl is to introduce an
intermediate record type between the two entity sets involved in the many-to-many
relationship. This intermediate record type is sometimes called the intersection rec-
ord or the connection record. This new record holds data common to the many-to-
many relationship of the original entities represented by their respective record types.

Incorrect method of expression an M:N relationship in DBTG.

" EMPLOYEE

\ WORKS_IN_DEPT ASSIGNED _TO

DEPT

8.3 Expressing an M:N Relationship in DDTG 387

Figure 8.11

Therefore, to express the above M:N relationship we introduce the record type
HOURS_ASSGND, which may be defined as follows:

type HOURS_ASSGND = record
Dept: string;
Employee: string;
Hours: integer;
end

A correct representation of the many-to-many relationship ot Figure 8.10 is now
expressed by introducing the sets EMP_ASSGND and DEPT_ASSGND with the
record types DEPT and EMPLOYEE as owner and the intermediate record*type
HOURS_ASSGND as member in both the sets. A data structure diagram for this
correct representation of the relationship is shown in Figure 8.11.

Figure 8.12 shows a possible method of implementing the M:N relationship
using the intermediate record containing space for the common data and two pointers,
one for each of the sets it is involved in. The common data here is the number of
hours the employee is assigned to a given department. Soretimes the intermediate
record contains duplicated information, e.g., departnent name and employee
name, to facilitate the recovery and verification operations. The list of employees
assigned to the Acgstn_Dept can be determined by the set EMP_ASSGND, where
the owner is the record occurrence Acgstn_Dept (AD) and following the list contain-
ing the-intermediate records AD J 40 and AD J 30. The record AD J 40 is owned
by Jerry and the record AD L 30 is owned by Larry in the set type DEPT_ASSGND,
indicating that employees Jerry and Larry work in the Acgstn_Dept. Similarly, we
can see that employee Larry is assigned to the Acqstn_Dept for 30 hours and the
Crcln_Dept for 10 hours. Since Larry is assigned to two departments, there are two
occurrences of the intermediate record type containing the intersection data pertaining
to Larry. Similarly, the circulation department has three employees assigned to it
and, hence, the set occurrence of the set type EMP_ASSGND with the circulation
department as the owner has three member record occurrences of the intermediate
record type HOURS_ASSGND.

Suppose there is a need to express another M: N relationship, let us say between
the employees and their participation in a number of activity clubs run by the library.
This can be implemented by introducing another intermediate record type, let us say
EMP_AFFILIATION, and two set types to establish this many-to-many relationship,
as shown ‘in Figure 8.13a. The corresponding sample database is shown in Figure
8.13b.

A correct representation of M:N relationship in DBTG.

DEPT | | EMPLOVER

EMP_ASSGND DEPT_ASSGND

Chapter 8 The Network Model

Figure 8.14

Muttiple copies of BOOKSs.

R

Figure 8.18

COPY_STATUS

BOOK

1231 2 Sakm ;' Lynntransit

Dickens ~Hard Times 12H232 1 Revere Lem

'Eley Roots - 123H 1233 1 Salem Lent J

Blu‘go “ Les Miserables 1234 > 1234 1 Lym Lent

(b)

The many-to-many relationship of Figure 8.3b is expressed indirectly by using
the one-to-many relationships between BOOK and BOOK_COPY, and CLIENT and
BOOK_DUE; and a one-to-one relationship Between BOOK_DUE and BOOK_
COPY. These sets are shown in Figure 8.15. Each book could have a number of
copies, which is shown by the set COPY_STATUS with owner record type being
BOOK and member record type being BOOK_COPY. The BOOK_COPY taken out
by a CLIENT is shown by the set BORROWED.

Many-to-many relationship of CLIENT and BOOKSs.

| Book

[

COPY_STATUS
CLIENT BOOK_COPY

BORROWED h—_l
BOOK_COPY_LENT

B?OK__DUE :

8.4 Cycles in DBTG 391

8.4

Cycles in DBTG

8.4.1

The original DBTG set construct prohibited the same type of record to be both an
owner and a member in a given set type. However, relationships of this type, some-
times called intrarecord relationships, are required to model, for example, the orga-
nizational structure of an enterprise or the part explosion of a subassembly or an
assembly, as shown in Figure 8.16. The DBTG set to express this relationship con-
tains the same type of records as the owner and member record types: EMPLOYEEs
for the former relationship and PARTS for the latter.

The 1978 modification of the DBTG proposal removed this restriction and al,
lowed a set type to have the same record type as both a member and an ownef
However, a given occurrence of a record could only be involved in one set oCqME
rence as an owner and in one set occurrence as a member. This modification to e
original DBTG set construct allows for the presence of cycles in the database.

A cycle is a pats in a single-level or multilevel hierarchy of DBTG sets sicB-
that the path starting from a given record type leads back to the same record tyiR
while traversing the sets from an owner to a member. However, the return need not
be to the same record occurrence. ‘

When the same record type is declared to be both the owner record type and the
member record type in the same set type, a cycle called the single-level cycle occurs.
We illustrate this type of cycle in Figure 8.16 and discuss it in Section 8.4.1.

When a sequence of set types exists in the database such that the member record
type in one set is the owner record type in the next set, a cycle called the multilevel
cycle is said to be present. If we start with one record type, which is the owner
record type in this sequence of set types, the final member record type reached as
we go through this sequence of owner-member record types is the starting owner
record type. (We illustrate the multilevel cycle in Figure 8.22 and focus on it in
Section 8.4.2.)

Set Involving Only One Type of Record

Figure 8.16

Consider the set type TEAM (a work group or a play group) wherein the owner anu
member record types are EMPLOYEE. The owner of a set occurrence of this set

Single-level cycles.

EMPLOYEE PART
A \

TEAM CONTAINS

394 ; Chapter 8 The Network Model

o e—
Figure 8.20 One record type with intersection record.

TEAM_EMP EMP_TEAM

The sets TEAM_EMP and EMP_TEAM can be defined as follows:

sets TEAM_EMP
owner is EMPLOYEE
member is TEAM_ASSG
end
set is EMP_TEAM
owner is EMPLOYEE
member is TEAM_ASSG
end

A sample database involving this many-to-many relationship between occur-
rences of the record type EMPLOYEE is given in Figure 8.21. Here the owner of
the two set occurrences of the set type TEAM_EMP are the records Barry and Harry
of the record type EMPLOYEE. The members in the sets are the record occurrences
{Barry Jerry 10, Barry Larry 15}, and {Harry Jerry 30, Harry Larry 25, Harry Mary
40} respectively. There are three occurrences of the set type EMP_ASSG with owners
Jerry, Larry, and Mary. The corresponding members are the record occurrences

{Barry Jerry 10, Harry Jerry 30}, {Barry Lary 15, Harry Larry 25}, and {Harry Mary

40}, respectively.

R
Figure 8.21 M:N relationship involving single record type.

Jerry

Mary

Bamy |- ‘Bary Jerry 10
l: Bm;mels

By [| ey ey 30
HamyLamy 25

Harry Mary 40

8.5 Data Description in the Network Model 398

S

Figure 8.22

A cycle involving 'diﬁerent record types.

8.4.2

\

[mavr |
| assemBLES

| eropuct] MADE IN

CONTAINS

[]
|

Sets Involving Different Record Types in a Cycle

Figure 8.22 is an example of a data structure diagram showing a cycle involving
different record types. In this figure we indicate that a plant assembles a number of
products. Each product is made from a number of parts and these parts are made in
some plants.

With the automatic set insertion rule (described below in Section 8.5.4) it is
obvious that no data can be inserted in a database with the above type of cycle. (See
exercise 8.9.)

The designer of the database, using the NDM, can decide whether to include
cycles in the database, provided the DBMS software correctly handles such cycles.
As in the case of loops, the cycle can be eliminated with the introduction of one or
more intermediate record types.

Data Description in the Network Model

8.5.1

Our discussion of the data description facility of a network database model closely
follows the CODASYL model.

Record

A DBTG record is made up of smaller units of data called data-items, vectors, and
repeating groups. Records of one type or several types are related via a set, and
provide the basic unit of access in the database. In previous discussions we have
used a number of records, such as CLIENT, EMPLOYEE, and so on.

Chapter 8 The Network Model

8.5.3

type may be declared as a member of one or more set types. Therefore, a record type
can be both an owner and a member in one or more set types. A record may be both
owner and member in the same set type: However, a record cannot be a member or
an owner of more than one occurrence of a given set type. If a record type is declared
as the owner type as well as the member type in the declaration of the set type, then
the same record can be both an owner and a member in the same occurrence of a set
type, or it can be the owner in one occurrence and a member in another.

A set contains precisely one occurrence of the owner record and any number of
occurrences of each of its member record types. A set containing only an occurrence
of its owner record type is an empty set. This contradicts the definition of the math-
ematical set which, when empty, does not contain any element. The DBTG set oc-
currence always has an owner record occurrence even when empty. An empty DBTG
set cannot exist without the owner record occurrence.

Order ot Members in a Set

Each set type declared in the schema must have an ordering specified for it. This
ordering indicates the logical ordering for the insertion of member records into the
set. The ordering specified could be ascending or descending and is based on data
items in each of the member record types. The ordering could also be given as the
order of insertion, in the reverse order of insertion, or before or after a selected
record.

The DBTG allows the user to specify the insertion point where a member record
will be connected into an occurrence of a set type. The possible order that could be
defined is first, last, next, prior, system default, sorted.

If we consider the set to be implemented via a doubly linked list, starting with
the owner record occurrence, then the order can be.explained as follows:

® order first indicates that the member records are to be inserted immediately
following the owner record, thus giving a reverse chronological order. The
member record most recently inserted into a set occurrence will be the first

- member in the set.

©® order last indicates that the member records are to be inserted immediately
befose the owner record occurrence, thus giving a chronological order. The
member record most recently inserted into the set will be the last member in
the set.

® order next and order prior indicates that the member recoras are to be inserted
relative to the currency indicator (discussed in Section 8.7.2) of the run unit for
the set type. If the currency indicator is pointing to the owner record, order next
is equivalent to order first and order prior is equivalent to order last.

® sorted indicates that the member records are to be maintained in a sorted
sequence. If the sorting is based on the value of key items of the member
record types, this is specified by the user.

® system default indicates that the DBMS maintains the member records in an
order mos: convenient to it.

8.5 Data Description in the Network Model . 399

8.5.4

Set Membership

The set membership criteria consist of the insertion and retention status ot a member
record type with respect to a set. The insertion status indicates how the membership
of a record occurrence, within a set occurrence of a set type of which it is a member,
is established. If the status is automatic, the insertion of the record as a member in
the appropriate occurrence of the set type is performed by the DBMS when a new
occurrence of the record type is stored. in the database. In the following example, we
declare the set BORROWED to be owned by the record type CLIENT and to contain
the record type BOOK_DUE as its member, the membership being defined as auto-
matic. This ensures that the library will know exactly which client has borrowed a
given volume.

type CLIENT = record
Client_No: string;
Name: string;
Address: string;
end

type BOOK_DUE = record
Call_No: integer;
Copy_No: integer;
Client_No: string;
Due_Date: string;
end;

set is BORROWED
owner is CLIENT
member is BOOK_DUE automatic
end

A manual membership status indicates that the membership is not automatic. In
effect, with a manual membership, the selection of the appropriate occurrence of the
set and the insertion of the record to become its member has to be done using appro-
priate data manipulation facilities. In the following example, the set COLLECTION
owned by the record type BRANCH is declared to have the record type BOOK_
COPY as member recard, the membership being manual. Therefore, the application
program is responsible for inserting an occurrence of the record type BOOK_COPY
in the appropriate occurrénce of the set type.

type BRANCH = record
Br_Name: string;
Address: string;
Phone_No: string;
end

type BOOK_COPY = record
Call_No: string;
Copy_No: integer;
Branch_ld: string;
Current_Status: string;
end

vl

Chapter 8 The Network Model

set is COLLECTION
owner is BRANCH
member is BOOK_COPY manual
end

The retention or removal status of a record indicates the continuance of the
relationship of a member record occurrence with the set type once it becomes a
member of an occurrence of the set type. The retention status could be defined as
fixed, mandatory, or optional.

Fixed status indicates that once a record becomes a member of an occurrence
of a set type, it will continue that relationship with that particular set occurrence until
the record if deleted. (’til death do us part!) When the owner of the record in a set
is dcieted, if the membership retention status had been defined as fixed, all member
record. occurrences are deleted along with the owner. In the following example, the
set CONTAINS owned by the BRANCH record type has DEPT and SECTION as
member record types; the membership insertion status is manual and the retention
status is declared to be fixed. Thus, once a department or section is assigned to a
given branch, it remains in tha. oranch and, if the branch is closed, the department
and the branch is deleted as well.

set is CONTAINS
owner is BRANCH
member is DEPT manual fixed
member is SECTION manual fixed
end

Mandatory status indicates that once a record becomes a member of an occur-
rence of a set type, it continues that relationship with an occurrence of that set type.
The particular set occurrence of which the record occurrence is a member may
change but the relationship in the set tvpe must continue. When the membership
status is defined as mandatory, an attempt to delete the owner record occurrence with
a nonempty set will fail until all the members are moved to another set occurrence.
In the following example, the set WORKS_IN.DEPT is owned by the record type
dept and has as its members occurrences of the record type EMPLOYEE, the inser-
tion and retention statuses being manual and mandatory, respectively. Thus, an oc-
currence of the employee record type is to be inserted in the appropriate set occur-
rence of the set type WORKS_IN_DEPT. Employees could, however, be moved from
one department to another. Also, once a number of employees are assigned to a
department, we cannot delete that department until we move all the employees to
another department.

set, 's WORKS_IN_DEPT
owner is DEPT
member is employee manual mandatory
end

Optional status allows a member record occurrence to discontinue a relationship
in a set type. When the membership status is defined as optional, an attempt to delete
the owner record occurrence will cause the members of the set occurrence owned by
the owner record to be disconnected and the owner record occurrence to be deleted;
the member record occurrence will continue to exist in the database. In the folloing

